
261

0022-4715/04/0100-0261/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 114, Nos. 1/2, January 2004 (© 2004)

Computation by Asynchronously Updating Cellular
Automata

Susumu Adachi,1 Ferdinand Peper,1 and Jia Lee1

1 Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe City,
651-2492 Japan; e-mail: sadachi@crl.go.jp

Received September 26, 2002; accepted July 24, 2003

A known method to compute on an asynchronously updating cellular automa-
ton is the simulation of a synchronous computing model on it. Such a scheme
requires not only an increased number of cell states, but also the simulation of a
global synchronization mechanism. Asynchronous systems tend to use synchro-
nization only on a local scale—if they use it at all. Research on cellular auto-
mata that are truly asynchronous has been limited mostly to trivial phenomena,
leaving issues such as computation unexplored. This paper presents an asyn-
chronously updating cellular automaton that conducts computation without
relying on a simulated global synchronization mechanism. The two-dimensional
cellular automaton employs a Moore neighborhood and 85 totalistic transition
rules describing the asynchronous interactions between the cells. Despite the
probabilistic nature of asynchronous updating, the outcome of the dynamics
is deterministic. This is achieved by simulating delay-insensitive circuits on it,
a type of asynchronous circuit that is known for its robustness to variations in
the timing of signals. We implement three primitive operators on the cellular
automaton from which any arbitrary delay-insensitive circuit can be constructed
and show how to connect the operators such that collisions of crossing signals
are avoided.

KEY WORDS: Asynchronous cellular automata; Moore neighborhood; totalis-
tic rule; delay-insensitive circuit; signal; module; universal computation.

1. INTRODUCTION

Cellular automata (CA) are discrete dynamical systems that have been used
extensively for studying computation, (1–5) self-reproduction, (1, 6, 5) computing
by physics, (7) crystalline computing, (8) nanocomputing, (9) polymers, (10) fluid

dynamics, (11) etc. Most cellular automata models update their cells in
parallel at discrete time steps, but such a synchronous updating scheme,
while easy to handle, has its limitations. In the context of modeling systems
in nature that lack a global clock, the use of a synchronous updating
scheme may cause artifacts, (12–14) such as false correlations between cells
or spurious attractors. In many models, the behavior obtained with syn-
chronous updating disappears when randomized (asynchronous) updating
schemes, like those in Monte Carlo simulations, are adopted. Examples are
simulations of the Prisoner’s dilemma, (15) where the pattern of cooperators
and defectors reduces to one of global defection, (12) or cellular automata,
where information and perturbations propagate less efficiently through
asynchronous updating, (16) and the dynamics and basins of attraction
change substantially with the updating scheme. (13, 17, 18) Other examples
include random Boolean networks, (19) where attractors and cycles disap-
pear in favor of a single or a few global attractors, (20) though some rudi-
mentary ‘‘pseudo-periodic’’ behavior can be found in asynchronous
Boolean networks when searching for it by genetic algorithms. (14) We also
mention lattice spin systems, (21) where the choice of the update scheme in
the Monte Carlo method used is so crucial that it tends to be considered
an integral part of the model, (22, 23) and coupled-map lattices (lattices with
continuously valued states; ref. 24), where attractors tend to disappear
in favor of a few global attractors when updating is done asynchro-
nously. (25–31) Especially for models used for studying self-synchronization
of systems, in which asynchronous elements adjust their timings to each
other, like ants in colonies, (32, 33) the brain, (34) and bushfires, (35, 36) the use of
synchronous updating is unlikely to lead to a deeper understanding of the
underlying mechanisms.

Synchronous timing also has its limitations when designing and build-
ing computers. The alternative, computers based on asynchronous circuitry,
has been gaining increasing attention. Among its advantages (37–40) are:
(1) lower power consumption and less heat dissipation, as only those parts
of an asynchronous circuit that are active need to draw power, (2) less
wiring, as no global clock signal needs to be distributed, (3) faster average
speed, as timing need not be tuned to the slowest part of a circuit, (4) less
dependence on the physical conditions and implementations with regard to
the correct operation of the circuit, (5) suitability for modular design tech-
niques, as timing relationships are less important. Even though these
advantages tend to be more pronounced at higher integration densities,
asynchronous circuits have yet to take root, not only because of a lack of
available design, testing, and manufacturing infrastructure, but also
because in CMOS technology asynchronous designs actually perform worse
with respect to power consumption, wiring requirements, and speed. One

262 Adachi et al.

reason for this is the overhead caused by the signaling protocol required for
making up for the lack of a global clock signal. Another reason is the
additional hardware required to avoid unstable behavior in the circuits.
These disadvantages may be less of an issue, however, in implementations
based on different technologies, (41, 42) such as RSFQ superconducting tech-
nology, (43, 44) molecular electronics, (45) molecule cascades, (46) and quantum
dots CA. (47, 48)

In order to efficiently realize asynchronously updating computing
schemes by alternative technologies, it is important to investigate how the
nondeterministic and probabilistic behavior associated with such schemes is
avoided. The existence of asynchronous computers proves the possibility of
deterministic behavior in asynchronously updated schemes, but it is unclear
at this point how such schemes materialize on lower levels, i.e., how
deterministic behavior can be extracted from the simple low-level asyn-
chronous interactions usually found on nanometer scales. An important
issue in this context is how a computational history can be obtained that is
independent of the order of asynchronous updating. (49) Though the invari-
ant history property is undecidable, as proven in ref. 49 for one-dimen-
sional CA, this does not preclude the existence of schemes possessing it.
One technique to construct such schemes is the simulation of a synchro-
nous model by an asynchronous model: the synchronous part guarantees
deterministic behavior, while the asynchronous part provides freedom of
updating order. For example, in ref. 50, a network of synchronously
updated threshold units (Hopfield network) is simulated on a network of
the same type but without constraints on the updating scheme. This con-
struction requires both an increased number of units and convergence time.
Another example is the simulation of a synchronous CA by an asynchro-
nous CA, which also causes overhead, but then in the number of states:
a synchronous CA with n states is simulated by an asynchronous CA with
3n2 states in refs. 51, 49, and 52, 4n2 states in ref. 53, n2+2n states in
ref. 54, and O(n `n) states in ref. 55.2 It is pointed out in ref. 41 that the

2 This overhead is actually not so bad, because to implement a synchronous CA by software
or hardware, each cell requires memory for storing both its current state as well as its new
state, a doubling of the memory space, which effectively squares the number of states.

above asynchronous CA lack some of the advantages over synchronous
schemes with regard to physical implementations, as the simulation
requires every cell to be continuously busy with synchronizing itself with
the others, which would cause high power consumption and heat dissipa-
tion of each cell.

To find more efficient ways to compute deterministically by asyn-
chronously updated systems, a more direct method is necessary, a method

Computation by Asynchronously Updating Cellular Automata 263

that does not need to rely on the simulation of global synchronization, but
rather conducts synchronization on a local level.

In this paper we propose a CA that operates in precisely this way.
Though it computes deterministically, it lacks a simulated global synchro-
nization mechanism and it requires only those cells to be active that
conduct computations, a characteristic of asynchronous systems. This
result is obtained by simulating on the CA so-called delay-insensitive cir-
cuits, a type of asynchronous circuit whose correctness of operation is
insensitive to arbitrary finite delays of signals (see, e.g., refs. 37, 39,
and 56). To simulate a delay-insensitive circuit on an asynchronously
updated CA, we design configurations on the CA of cells set in appropriate
states that behave like signals and like modules operating on signals. The
configurations for the signals can propagate autonomously through the
cellular space of the CA in the absence of obstacles. The configurations for
the modules operating on these signals can change the directions of signals
and increase or decrease them in number. Put together in appropriate ways,
the configurations operating on signals can be used to form delay-insensi-
tive circuits by which computations can be conducted. Unlike asynchro-
nously updating CA based on the same principle, (41, 57) the proposed CA
employs a Moore neighborhood, which implies that each cell interacts with
its direct orthogonal and diagonal neighbors. The CA has cells that can be
in six possible states and that undergo transitions in accordance with a set
of 85 totalistic transition rules, a type of rule in which the outcome of a
cell’s state transition is determined by the number of the cell’s neighbors in
certain states. (58) Often used in the context of systems modeled by mean-
field theory, CA with totalistic transition rules may be closer to physical
systems than other CA. (25, 58)

The results in this paper may not only open the way to massively par-
allel computation models with improved physical realizability, but also to
more realistic CA-based models of physical and biological phenomena that
lack an external clock signal.

This paper is organized as follows. In Section 2, we define asynchro-
nously updated CA, and in Section 3 we design signals and describe how
and how fast they propagate on an asynchronously updated cellular space.
The subject in Section 4 is delay-insensitive circuits. We introduce three
primitive modules by which any arbitrary delay-insensitive circuit can be
constructed. In Section 5, we implement delay-insensitive circuits on an
asynchronously updated CA. We show how the primitive modules can be
implemented on an asynchronously updated CA and how they can be
connected in circuits without collisions of crossing signals. As examples, we
design a delay-insensitive NAND gate and an S-module (a type of 1-bit
memory). We finish with concluding remarks.

264 Adachi et al.

2. ASYNCHRONOUSLY UPDATING CELLULAR AUTOMATA

A CA is a system in which identical finite automata are arranged as
cells in a regularly structured d-dimensional array (in this paper d=2),
such that they are mutually connected to their neighbors. (1–3, 59) Each cell
can be in one state, which is a member of a finite state set. The possible cell
states allowed in this paper are 0, 1, 2, 3, 4, and 5. We denote these states
by the symbols in Fig. 1. A cell with state 0, called a quiescent cell, is
commonly used for the background. The state of a cell at time t is updated
to a state at time t+1 in accordance with transition rules, which are
defined as a function f that has the neighboring cells’ states and the cell’s
own state as inputs. Formally,

Definition 2.1. A deterministic cellular automaton (or simply cellular
automaton) is a system defined by A=(Zd, N, Q, f, q0), where Z is the set
of all integers such that Zd represents a d-dimensional array of the cellular
space (d \ 1). N is called a neighborhood index, denoted by (n1, n2,..., nn),
where each n i ¥ Zd and n1=(0, 0,..., 0). Given a cell a ¥ Zd, each cell in
{(a+n1),..., (a+nn)} is a neighborhood cell of a. Moreover, Q is a finite
set of states (Q] ”), whereas f: Qn

Q Q is a mapping called the local
transition function. q0 ¥ Q is the quiescent state satisfying f(q0,..., q0)=q0.
A configuration in A is a mapping c: Zd

Q Q, which assigns to each cell in
A a certain state from Q.

There are two well-known models according to which cells interact
with neighboring cells. The first is the von Neumann neighborhood, in
which each cell interacts with four neighboring cells—those north, south,
east, and west of it. The second is the Moore neighborhood, in which each
cell interacts with eight neighboring cells, which, in addition to the von
Neumann neighborhood, includes the diagonal cells. Formally,

Definition 2.2. Let A=(Z2, N, Q, f, q0) be a two-dimensional CA.
A is said to have a von Neumann neighborhood (see Fig. 2(a)) if

N=((0, 0), (0, −1), (1, 0), (0, 1), (−1, 0)).

40 1 2 3 5state

symbol

Fig. 1. The symbols by which the cell states are encoded.

Computation by Asynchronously Updating Cellular Automata 265

(x,y)

(x,y-1)

(x-1,y) (x+1,y)

(x,y+1)

(x-1,y-1)

(x,y)

(x,y-1)

(x-1,y) (x+1,y)

(x,y+1)(x-1,y+1)

(x+1,y-1)

(x+1,y+1)

(a) (b)

Fig. 2. Two-dimensional cellular spaces with (a) von Neumann neighborhood and (b)
Moore neighborhood.

A is said to have a Moore neighborhood (see Fig. 2(b)) if

N=((0, 0), (0, −1), (1, −1), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1, −1)).

In CA research, mostly symmetric and totalistic transition rules have
been the topic of interest. In a symmetric rule the pattern formed by the
state of a cell and the states of the neighboring cells, including their reflec-
tion and rotation symmetric forms, determines the next state of the cell in a
transition. In a totalistic rule the number of neighboring cells in a certain
state, together with the state of the cell, determines the next state of the cell
in a transition. As we will only use totalistic rules in this paper, we formally
define only them:

Definition 2.3. Let A=(Z2, N, Q, f, q0) be a two-dimensional CA
with Moore neighborhood. A is totalistic (sometimes called outer-totalistic
or semi-totalistic) iff Q … Z and the local transition function f has the form

c −

0=f(c0, n0, n1,..., nm − 1), (1)

nk=|{ci | ci=k}|, (2)

where c0 and ci (i=1, 2,..., 8) are the states of a cell and its eight neighbors
respectively before the update, c −

0 is the state of the cell after the update
(see Fig. 3), and the variable nk denotes the number of cells in state k
(k=0, 1, 2,..., m − 1), whereby m is the number of states.

266 Adachi et al.

c1 c2 c3

c4 c0 c5

c6 c7 c8

c1 c2 c3

c4 c’0 c5

c6 c7 c8

.

Fig. 3. Update scheme according to which a cell undergoes a transition.

A well-known (synchronously updated) CA with a Moore neigh-
borhood and totalistic transition rules is the Game of Life. (59) This CA is
based on a two-dimensional array of cells, each of which can be in one of
two states, dead or alive. Though only a few transition rules are required,
this model exhibits a remarkably rich behavior, which has been shown to
be computationally universal.

Synchronously updated CA require all cells to undergo state transi-
tions simultaneously at every time step. Consequently, the global states are
uniquely determined at all times by the local transition function. If cell
transitions occur in accordance with some other updating scheme, for
example randomly and independently of each other, (16–18) the resulting
model is an asynchronously updated cellular automaton (ACA). In this paper
we limit ourselves to a scheme in which cells to be updated are randomly
selected one by one. Formally,

Definition 2.4. Let A=(Z2, N, Q, f, q0) be a CA. A is asynchro-
nously updating if at each time step only one cell that is randomly selected
from Z2 undergoes a state transition, whereby each cell has a probability
between 0 and 1 of being selected.

This updating method resembles Monte Carlo updating, a scheme
used in, for example, the simulation of the relaxation of spin lattices, in
which the transition probability of each cell depends on the difference of
the energies before and after update in accordance with some algorithm,
such as the heat-bath algorithm (60) (Gibbs sampler (61)) or the Metropolis
algorithm. (62) In this paper we make no assumptions on the transition
probabilities other than the assumptions in Definition 2.4, which guaran-
tees that two neighboring cells are never updated simultaneously. This
simplifies the design of the CA, (63) as compared to asynchronous CA that
update their cells at arbitrary times independent of each other, (51, 57) which
may occasionally result in neighboring cells being updated simultaneously.
In an ACA, the global states are not necessarily uniquely determined at all
times by the local transition function, because of the randomness by which
transitions are timed.

Computation by Asynchronously Updating Cellular Automata 267

In the formulations of the transition rules in this paper, we shall leave
out rules that keep a cell’s state unchanged. Such dummy transition rules
are actually quite numerous, but we feel justified in ignoring them, since
they do not contribute anything of value to our models. The updating
scheme for an ACA may thus be interpreted as the updating scheme above,
being applied under the condition that the states of a cell and its neighbors
match the left-hand-side of at least one of the transition rules. A cell’s state
will remain unchanged as long as no such matches can be made when it is
selected by the updating scheme to undergo a transition.

3. SIGNALS

To conduct non-trivial operations on CA, signals are required. A signal
is a configuration of cells in certain states that moves in a certain direction
over the cells as time passes. The basic form of a signal consists of one state-
2 cell (the core) and three state-1 cells (the sheath) covering the part of the
core opposite to the direction the signal moves into, which is diagonal. This
sheath isolates the core from the rest of the cellular space to ensure that the
core can only extend into the direction in which the sheath is missing. The
signal has one of the two standard forms of signals in ACA identified in
ref. 63. We call a continuous area of cells along which a signal propagates
a path. For example, the signal in Fig. 4 propagates along a path in the
southeastern direction, whereby its front part is extended step by step,
while its tail is withdrawn by about the same pace.

The transition rules for signal propagation are given in Table I. Start-
ing from a signal in its basic form in Fig. 4(a), we obtain a form in which
the core is extended diagonally in the propagation direction due to rule 1,
resulting in a state-3 cell in front of the original core (see Fig. 4(b)). This is
followed by a forward extension of the sheath at the left or right side of the
core due to rule 2, which may result in either form in Fig. 4(c), depending
on which side is updated first. The other side of the sheath then follows due
to rule 3, resulting in the form in Fig. 4(d). Rules 12 and 13 are included
for technical reasons. Though they do not contribute to signal propaga-
tion—they actually slow down signals by making the sheath withdraw
instead of extend—they are required to control interactions between signals
in the vicinity of certain configurations that process signals, to be described
in Section 5. In any case, the situation in Fig. 4(d) needs to occur before
the process can progress any further. Subsequently, the cell at the back of
the core is changed from state 2 to state 1 if there is one state-3 cell in front
of it and five state-1 cells surrounding it, as in the transition from Fig. 4(d)
to (e).

268 Adachi et al.

Table I. Transition Rules for the Propagation of a Signal.

The Numbers in Column nk Denote, from Left to Right, the

Number of Neighboring Cells in State 0, State 1, State 2, etc.

No. c0 nk c −

0

1 0 701000 3
2 0 511100 1
3 0 421100 1
4 2 250100 1
5 3 530000 2
6 1 350000 0
7 1 440000 0
8 1 530000 0
9 1 620000 0

10 1 710000 0
11 1 800000 0
12 1 511100 0
13 1 421100 0

To erase the signal’s tail, cells in state 1 that have only state-0 and
state-1 cells as neighbors are reset to state 0, like in the transitions from
Fig. 4(e) to the different possible configurations in Fig. 4(i). The erasure of
the tail may also be postponed until the state-3 cell forming the head of the
signal in Fig. 4(e) is transformed into a normal core, i.e., into a state-2 cell,
as in Fig. 4(f). In any case, we will eventually find ourselves in situations
resembling those in Fig. 4(j) or (k), which form the start of a new step
forward of the signal. By repeating the above process, the signal is trans-
mitted through the asynchronous cellular space.

The successive configurations in Fig. 4 are typical for signal propaga-
tion. Due to the asynchronicity of the model, the order in which the cells
undergo transitions may vary, and even subsequences of transitions differ-
ent from those in Fig. 4 may occur. The standard form of the signal in
Fig. 4(a) and the lower part of Fig. 4(j) does not necessarily occur during
propagation, because, due to the asynchronous character of the ACA, the
withdrawal of the tail may be delayed when the core has already been
extended forward, as in Fig. 4(k).

Figure 5 shows a sequence of signals propagating along the same path.
Subsequent signals remain separated due to a regime in which a signal’s tail
should first be cleared before the signal behind it can be extended forward.
In other words, a signal waits to extend its core until the remainder of the
preceding signal in front of it is cleared. As a result, successive signals
moving along the same path always remain separated by at least one
quiescent cell.

Computation by Asynchronously Updating Cellular Automata 269

(j)

(a) (b) (d) (e)

(c)

(f)

1

2

2

3

3

12

12

13

13

4 5

5

(g)

(h)

(i)

7 8 7 7 8 7

9 8 8 8 8 9 9 8 8 8 8 9

9 10 9 9 10 9

(k)

1

Fig. 4. Propagation of a signal on the asynchronously updated CA. The labels of the arrows
between the subsequent configurations denote the rules in Table I according to which the
transitions take place. Starting from the standard configuration of a signal in (a), the core is
extended forward, followed by the sheath at the left and right sides of the signal, which brings
us eventually to configuration (d). The withdrawal of the sheath back from (d) to (c) and (b)
is an artifact of rules 12 and 13, which, though not strictly necessary for signal propagation, is
used to smoothly process signals by some of the configurations in Section 5. From (d) on, the
tail of the signal is withdrawn, which may be done in a variety of ways. Eventually, a config-
uration as in (j) will emerge, though some variations on this may be possible, like (k), as it
cannot be guaranteed that the tail of the signal withdraws before the core extends forward
again. Transitions like the one from the lower configuration in (i) to the lower configuration
in (j) by rule 5 may also occur from the other configurations in (i) in rows (g) or (h) to the
corresponding configurations in (j) in rows (g) or (h) due to rule 5. The arrows denoting
these transitions are left out for reasons of simplicity.

270 Adachi et al.

(a) (b) (c) (d)

.

Fig. 5. Two subsequent signals on the ACA. The signal at the back will not extend its core
forward unless the signal in front of it has withdrawn its tail. This guarantees that there is
always a space between the signals of at least one quiescent cell.

The distance a signal travels on an ACA with 100 × 100 cells as a
function of time averaged over 104 simulations is shown in Fig. 6, together
with its standard deviation. The x-axis denotes the time steps t and the
y-axis denotes the distance x of signal propagation. One time step corre-
sponds to 104 times selecting one cell randomly and updating it. All cells in
the ACA being equal in the probability of being selected for update, this
results in one update on the average per time step of each of the cells. The
average distance OxP traveled by a signal is 0.125 cells per step, and the
variance of the distance is proportional to the number of steps (we
measured ODx2P ’ 0.06t). The distribution of the distance converges to a
Gaussian distribution as the number of steps increases.

200 400

20

40

60

av
er

ag
e

di
st

an
ce

time step t

<
x(

t)
>

Fig. 6. Average distance of a signal propagating on an ACA with 100 × 100 cells as a func-
tion of time. Each cell is updated one time per step on the average, and this results in the
signal advancing by approximately 0.125 cells per step on the average.

Computation by Asynchronously Updating Cellular Automata 271

4. DELAY-INSENSITIVE CIRCUITS

A Delay-Insensitive (DI) circuit is an asynchronous circuit whose
operation is robust to arbitrary signal delays. A DI-circuit needs no central
clock since it is driven by input signals; it may thus be called an event-
driven circuit. The circuit is composed of paths (wires) and modules. Signals
are transmitted along the paths and are processed by the modules.

Any arbitrary Boolean circuit in a synchronous system can be con-
structed from a fixed set of primitive operators, for example from AND-
gates and NOT-gates. Unfortunately, such Boolean gates are not suitable
as primitives for DI circuits because they lack the functionality needed
to cope with delay-insensitivity. (64, 65) Primitives that do form a fixed set
from which any arbitrary DI circuit can be constructed—called a universal
set—have been the subject of a few proposals. (39, 56, 42) We use a universal set
of primitives based on those in ref. 42 that is particularly suited for the
ACA in this paper. Unlike the primitive modules for DI circuits with up to
five or six paths proposed in refs. 39 and 56, the primitive modules we use
have four or less bi-directional paths, i.e., paths that can be used for both
input and output, albeit not at the same time. Moreover, a path can simul-
taneously contain multiple signals, as in Fig. 5.

We define the following three modules as DI circuit primitives:

– FORK. A module with one input path and two output paths, as
shown in Fig. 7(a). Upon receiving an input signal, it produces one output
signal on each of its output paths.

– S-JOIN (Symmetric JOIN). A module with three bi-directional
paths, as shown in Fig. 7(b), each expressed by a double-headed arrow.
This module is symmetric, in the sense that when it receives input signals
from two of the paths, it sends an output signal along the remaining path.
When it receives only one input signal, the signal is held until a signal is
received from one of the other two paths. A signal that is held is called
pending.

– 4-MERGE (4-Way MERGE). A module with four bi-directional
paths, as shown in Fig. 7(c), which has four functions. When it receives a
signal from A or B, it sends an output signal to C. This functionality is
called MERGE. When it receives signals from A and B simultaneously, it
sends two successive signals to C. This functionality is called Parallel-
MERGE (P-MERGE). When it receives a signal from C, it sends an
output signal to D. This functionality, called Input/Output Multiplexing
(IOM), is used together with the MERGE functionality to convert the bi-
directional path C into one input path (A or B) and one output path (D).

272 Adachi et al.

A

B C

A

B C

A B

C

D

(a) (b) (c)

Fig. 7. Primitive modules: (a) a FORK module, (b) an S-JOIN module, and (c) a
4-MERGE module.

Finally, when the 4-MERGE module receives a signal from D, it waits
until it receives a signal from A and then sends an output signal to B. The
roles of A and B may also be reversed in this case. This functionality, called
Arbitrating Test and Set (ATS), is used to arbitrate the access to a shared
resource by competing processes, such as, for example, two signals that
wish to pass through the same area at the same time (see crossing of signals
in the next section).

This set of modules is universal, that is, any arbitrary DI circuit can be
constructed from them. As an example, a module called TRIA, (39) con-
structed from one S-JOIN and three 4-MERGE modules, is shown in
Fig. 8 (see also ref. 42). A TRIA module has three input and three output
paths. When it receives signals from a (resp. b or c) and b (resp. c or a), it
sends an output signal to p (resp. q or r).

a

c

b

p

q r

Fig. 8. A TRIA module constructed from one S-JOIN and three 4-MERGE modules.

Computation by Asynchronously Updating Cellular Automata 273

5. IMPLEMENTING DELAY-INSENSITIVE CIRCUITS ON

ASYNCHRONOUS CELLULAR AUTOMATA

5.1. Implementing the Primitives

To implement the three primitive modules {FORK, S-JOIN,
4-MERGE} in Section 4 on the proposed ACA, we use six states, of which
states 4 and 5 are specifically for the modules.

The FORK module is composed of three cells in state 4, and it uses
the transition rules in Table II in addition to some of the rules in Table I.
The configurations of the FORK and its operations are shown in Fig. 9.
The state-4 cell of the FORK nearest to the signal in Fig. 9(a) induces the
signal to extend its core into a state-2 cell, as in Fig. 9(b). As this cell can
be interpreted as a signal’s core from two sides, it is further extended into
a state-3 cell at each of its two sides, as in Fig. 9(c). The next step in the
process is surrounding the two signals-to-be with sheath at appropriate
places. This will eventually result in the configuration in Fig. 9(g), possibly
via the intermediate configuration in Fig. 9(e). It may also result in the
configurations in Fig. 9(d) or Fig. 9(f), due to the undesired (but possible)
application of rules 2 and 3, respectively. While these configurations are
dead ends, they cannot be avoided with absolute certainty, because rules 2
and 3 are required for signal propagation, as is shown in Section 3. The
way out of this is provided by rules 12 and 13. Though they slow down the
propagation of a signal, they also bring us back on the right track toward

Table II. Transition Rules Used for the FORK Module

(Some of the Rules in Table I Are Also Used for the FORK)

No. c0 nk c −

0

14 0 601010 2
15 0 412100 1
16 0 401120 1
17 0 322100 1
18 0 232100 1
19 0 311120 1
20 0 221120 1
21 2 041210 3
22 3 520100 2
23 3 052010 1
24 1 520010 0
25 1 510020 0
26 1 600020 0
27 1 700010 0

274 Adachi et al.

(a) (b) (g)

(j) (m)

(c) (h)

(i) (k) (l)

14 1 15-20 21

4,22

1,6-11 2,3,23 4
5-11,
24-27

(d)

2
12

(e) (f)

15

3

13

Fig. 9. Configuration and operation of the FORK module. The input signal triggers the
formation of two output signals, after which it is destroyed. The dead-end configurations in
(d) and (f) are artifacts of rules 2 and 3. Escape from them is possible due to rules 12 and 13,
respectively.

the configuration in Fig. 9(g), as their effects are opposite to those of rules
2 and 3, respectively. The randomized nature of the update process means
that at some time these rules will be applied, enabling our escape via the
only way out of the dead ends. Next, after the two signals to be output
have gathered sheath, they develop further along the lines of Fig. 9(h) to
(m), in the process splitting up, and having the remainders of the input
signal destroyed.

The S-JOIN module is composed of one cell in state 5, and it uses the
transition rules in Table III, in addition to some of the rules in Tables I
and II. The S-JOIN’s configurations and operations are shown in
Fig. 10(A) for signals arriving from opposite paths and in Fig. 10(B) for
signals arriving from adjacent paths. A single signal input to the S-JOIN
remains pending until a second signal arrives.

When two signals arrive from opposite paths, the state-5 cell of the
S-JOIN induces the formation of a new state-2 cell, in turn giving rise to
the formation of a state-3 cell (see Fig. 10(A-b)), which forms the front part
of the output signal-to-be. Next, the sheath is formed, as in Fig. 10(A-c),

Computation by Asynchronously Updating Cellular Automata 275

Table III. Transition Rules Used for the S-JOIN Module

(Some of the Rules in Tables I and II Are Also Used for the

S-JOIN)

No. c0 nk c −

0

28 0 502001 2
29 0 322001 1
30 0 232001 1
31 2 042101 3
32 3 061001 1
33 1 520001 0
34 1 610001 0
35 1 700001 0
36 1 501101 0
37 1 502001 0
38 0 233000 1
39 0 321101 1
40 0 143000 1
41 1 411101 0

after which the output signal develops further (Fig. 10(A-d)) and the input
signals are destroyed, resulting in the situation in Fig. 10(A-e). In the sub-
sequent stages the output signal develops further, clears the remainders of
its tail, and breaks away from the S-JOIN (Fig. 10(A-j)).

When two signals arrive from adjacent paths to the S-JOIN, a more
complicated situation arises. As signals are now directly next to each other
(see Fig. 10(B-b)) an unintended interaction due to rule 3 may occur,
resulting in the dead-end configuration in Fig. 10(B-c). The way to resolve
this situation is similar to the way used with the FORK, i.e., by applying
rule 13. Eventually, the configuration in Fig. 10(B-d) emerges, after which
the operation continues along the same lines as with input signals arriving
from opposite paths, i.e., by destroying the input signals, clearing the
remainders of the output signal’s tail, and breaking the output signal away
from the S-JOIN, eventually resulting in a configuration as in Fig. 10(B-l).

The 4-MERGE module is composed of cells in states 4 and 5 and it
uses the transition rules in Table IV, in addition to some of the transition
rules in Tables I–III. The configurations and operations of the 4-MERGE
are shown in Fig. 11.

The MERGE-functionality, illustrated by the sequence of configura-
tions in Fig. 11(A), is mainly based on rules 42 to 61. The operation
progresses along the same lines as with the FORK and the S-JOIN, with an
output signal created by the MERGE, after which the input signal is
destroyed. Again a dead-end situation (Fig. 11(A-f Œ)) occurs that resembles

276 Adachi et al.

(a) (c)

(g) (j)

(a) (e)

(k) (l)

(A)

(B)

(i)

(b) (d) (e)

(f) (h)

(d) (f)

(g)

(h) (i) (j)

28,1

5,
28,1

15,17,
29,30 31 4

6-11

32 5 1,2,3
4-11,
33-37

15,29,
38-41 31

4

6-11

32 5 1,2,3
4-11,
33-37

(b)

(c)

313

Fig. 10. Configuration and operation of the S-JOIN module. (A) Two signals input at
opposite paths and (B) two signals input at adjacent paths. The two input signals trigger the
formation of an output signal, after which the input signals are destroyed. The dead end (B-c)
is an artifact of rule 3. Escape from it is only possible by the application of rule 13.

the situation we encountered before with rules 2 and 12 or rules 3 and 13.
Here rule 44 is the culprit. While rule 44 is necessary for the transition from
Fig. 11(A-c) to (A-d), it also causes a dead end. Rule 50 resolves this situa-
tion, at the price of slowing down the processing of the signal in the con-
figuration in Fig. 11(A-d). A similar situation occurs with rules 46
and 47, as shown in Fig. 11(A-d) and (A-e). Rule 47 does not play a positive

Computation by Asynchronously Updating Cellular Automata 277

Table IV. Transition Rules for the 4-MERGE Module

(Some of the Rules in Tables I–III Are Also Used for the 4-MERGE)

No. c0 nk c −

0 No. c0 nk c −

0

42 0 301022 3 64 5 500030 2
43 3 130022 2 65 0 301040 3
44 0 311012 3 66 4 321002 0
45 2 030122 1 67 2 500120 5
46 0 400103 3 68 3 300041 2
47 3 400103 0 69 2 020141 1
48 3 220112 1 70 1 300041 0
49 3 410003 2 71 0 201041 3
50 3 311012 0 72 3 030041 4
51 0 411101 1 73 4 121040 1
52 2 130103 1 74 0 302021 3
53 1 420020 0 75 3 131021 2
54 1 430001 0 76 0 312011 2
55 1 310022 0 77 2 032021 1
56 1 410012 0 78 0 402011 2
57 1 500003 0 79 2 222011 1
58 1 500012 0 80 2 131120 5
59 1 320012 0 81 2 310112 1
60 1 230003 0 82 3 310022 2
61 1 240020 0 83 1 400022 0
62 0 401003 3 84 1 301022 0
63 3 230003 4 85 1 601001 0

Fig. 11. [See page 279.] Configuration and operation of the 4-MERGE module.
(A) MERGE functionality. An input signal arrives from the lower left input path, giving rise
to an output signal on the lower right path. Alternatively, when an input signal arrives from
the upper left input path, the same happens. The dead end in (A-f Œ) is an artifact of rule 44.
Escape from it is possible by rule 50, which has the opposite effect of rule 44. (B) P-MERGE
functionality. One of the input signals is accepted first, whereas the other signal is kept
pending until the first signal’s processing is finished. (C) IOM functionality. The input signal
arriving via the bi-directional path is redirected as output. The dead end in (C-b), caused by
rule 46, is resolved by rule 47. (D) ATS functionality. Arbitration decides which of the two
input signals enters first. If it is the lower input signal, the track from (D-b) to (D-g) is
followed, resulting in a signal being output and the upper input signal being kept pending.
The reverse transition of rule 44 between (D-b) and (D-c) is left out to save space in the
figure. If the arbitration results in the upper signal entering first, the track from (D-h) to (D-r)
is followed, resulting in one signal being output via the upper right path and no signal
pending.

278 Adachi et al.

(a) (e) (g) (h)

(A)

(B)

(C)

(D)

(a)

(c) (d) (e)

(f)

(c) (e) (f) (g)

(d)

(n) (r)

(b) (f)

42,19,
39

44

45,48,
49

1,51 52-61

(c’) (d’) (e’)

(b)

44

50

44

50

(d)

4,6-11,
63,24,
64

62,51,
39

65,66,
67

68,69,
70

(h) (i)

71,19,
20

4,6-11,
72,64

24,73,
53,25

(k)

74,19,
39

(l)

75,76

(m)

77,78

74,79

(o)

80,81,
82

(p)

45,59

(q)

1,16,
39,70,
55,56

(f’)

44 50

(a) (b) (c)

71,19,
20,42,
39

4,6-11,
43,44,
46,47

(e) (f)

1,51 52-61,
72,64

(g)(j)

45,48,
49

24,73,
53,25

(c) (d)

4,6-11,
43,

50

47 46

46,47,
45,48,
49,44,
50,1,
51

52-61
44,50

52-61
44,50

(a)

47

46

5

(b)

1-5,61,
54,55

Computation by Asynchronously Updating Cellular Automata 279

role in the MERGE functionality but is necessary to avoid the dead-end
situation in the IOM functionality in Fig. 11(C-b).

The P-MERGE functionality, illustrated by the sequence of configu-
rations in Fig. 11(B), is based on the same rules as the MERGE function-
ality. The main difference is that in the configuration in Fig. 11(B-b)
arbitration is necessary to decide which of the two input signals is to be
processed first. The two possible continuations, i.e., from (B-c) to (B-e) or
from (B-cŒ) to (B-eŒ) respectively, go along the same lines as the MERGE.
After the first input signal enters the P-MERGE, the second input signal
is kept pending until the P-MERGE finishes processing of the first input
signal. Eventually, for both continuations we wind up in a configuration
resembling the one in Fig. 11(B-f) .

The IOM functionality, illustrated by the sequence of configurations in
Fig. 11(C), is mainly based on rules 62 to 70. The operation progresses
along the same lines as with previous configurations, with an output signal
created by the IOM, after which the input signal is destroyed.

The ATS functionality, illustrated by the sequence of configurations
in Fig. 11(D), is mainly based on rules 71 to 85. As with the P-MERGE,
again we encounter arbitration. In the upper track, starting with the con-
figuration in Fig. 11(D-b), the lower input signal is admitted first. The
processing of the lower input signal is essentially similar to the processing
according to the MERGE functionality, and it gives rise to one output
signal. The upper input signal is kept in a pending state (Fig. 11(D-g)) that
will last until the next input signal from the lower path arrives.

In the lower track, starting with the configuration in Fig. 11(D-h), the
upper input signal is admitted first, after which it is made pending in
Fig. 11(D-j). This pending state is resolved when the lower input signal
enters the configuration. Eventually, the whole 4-MERGE is cleared of
signals and a signal is output, as in Fig. 11(D-r). The arbitration encoun-
tered with the ATS functionality results in the divergence into the final two
situations, (D-g) and (D-r), a situation different from that with the arbi-
tration of the P-MERGE in Fig. 11(B). While this behavior is nondeter-
ministic, it may still result in determinism on a more global, say circuit,
scale, as we will see with the circuit for crossing signals below.

5.2. Combining the Primitives into Circuits

Realizing a particular delay-insensitive circuit is a matter of laying out
the primitive modules on the CA, whereby output paths and input paths
connected to each other are lined up on the cellular space such that signals
flow from the corresponding module outputs to the corresponding module
inputs. Special care with regard to this is required for paths that cross each

280 Adachi et al.

other, since the CA lacks a third dimension via which crossing can be
made. To prevent the collision of signals on crossing paths, the signals need
to resolve which of them may pass first. A well-designed circuit will in most
cases contain crossings over which only one signal needs to pass at a time.
Such crossings are called collision-free. Even after careful design, however,
there may still be crossings where this is not guaranteed. Though it is pos-
sible to design signals such that they can cross each other by adding transi-
tion rules, as in ref. 63, there is a more elegant way based on a module that
is specifically designed for this task.

Such a crossing module is realized using only our primitives and only
collision-free path crossings. (42) A circuit scheme of this module is given in
Fig. 12(a), and its implementation on the ACA in Fig. 12(b). This module
arbitrates between signals competing for a shared resource, which is the
area where the signals cross. The arbitration conducted by the module is
based on the ATS-functionality of the two 4-MERGE modules in the
circuit. The crossing module can be used under all circumstances: the order
by which the signals arrive at its inputs is irrelevant for its correct func-
tioning: eventually all input signals pass the crossing.

A

B

A’

B’

C

ATS1

ATS2

A

C

B

B’

A’

(a) (b)

.

Fig. 12. (a) Delay-insensitive circuit of a crossing module and (b) its implementation on the
ACA. The two 4-MERGE modules with ATS functionality, i.e., ATS1 and ATS2, record the
arrival of signals from inputs A and B, respectively. Signal C loops around along the arrows
to check the states of ATS1 and ATS2 alternatingly. If the state of ATS1 (resp. ATS2)
indicates arrival of an input signal, the state is reset and an output signal is produced at AŒ

(resp. B Œ).

Computation by Asynchronously Updating Cellular Automata 281

5.3. A Delay-Insensitive NAND Gate

The NAND gate, commonly used in synchronous circuits, has a delay-
insensitive counterpart that conducts the logical NAND operation even if
input signals are delayed. To represent a binary signal in a DI circuit, two
paths are usually used, one labeled 0 and one labeled 1. Called dual-rail
encoding (e.g., see ref. 40), this method encodes a 0 by a signal on the path
labeled 0 and a 1 by a signal on the path labeled 1. Signals on both paths at
the same time are forbidden, and the absence of a signal on either path
indicates that no information is being transmitted. Using dual-rail encoding
for its input and output paths, the NAND-gate requires four input paths,
i.e., a0 and a1 encoding one input signal and b0 and b1 encoding the other
input signal, as well as two output paths, encoded by c0 and c1.

The design of the delay-insensitive NAND gate is shown in
Fig. 13(a). (42) It operates as follows.

– If a signal is input to each of the two paths in one of the sets
{a0, b0}, {a0, b1}, or {a1, b0}, a signal is output to c1.

(a) (b)

a0

a1

b1

c0

c1

b0

a0

a1

b0

b1

c0

c1

.

Fig. 13. (a) A delay-insensitive dual-rail encoded NAND gate and (b) its implementation on
the proposed ACA. Paths a0 and a1 correspond to one input line in a conventional NAND-
gate, paths b0 and b1 to the other input line, and paths c0 and c1 correspond to the output line.

282 Adachi et al.

– If a signal is input to each of the paths a1 and b1, a signal is output
to c0.

– Signals input to any other combinations of paths are illegal.

If there is only one input signal, it becomes pending, and the gate will wait
for the second input signal. The implementation of the delay-insensitive
NAND on the proposed ACA is shown in Fig. 13(b). In this figure, signals
are input to the wires a1 and b1. As all crossings are collision-free, the
crossing module of Fig. 12 is not required.

The dual-rail encoding method employed is very convenient, since it
allows the construction of a NOT gate by just crossing two wires, reversing
the outputs 0 and 1. It follows that a delay-insensitive AND gate can be
constructed from the delay-insensitive NAND gate by simply reversing
outputs c0 and c1, and a delay-insensitive OR gate can be constructed by
reversing inputs a0 and a1, as well as reversing inputs b0 and b1 of the delay-
insensitive NAND gate.

5.4. A 1-Bit Memory

The S-module (Select module) is a 1-bit memory that was first pro-
posed in ref. 56. This module has three input paths, i.e., S, R, and T, and
four output paths, i.e., SŒ, RŒ, T0, and T1. Its internal state can be 0 or 1.
This module functions as follows:

– If a signal is input to S, the memory’s state is set to 1, and an
output signal is produced at SŒ.

– If a signal is input to R, the memory’s state is set to 0, and an
output signal is produced at RŒ.

– If a signal is input at T, an output signal is produced at Ti, where i
is the state of the memory (i=0 or 1).

We use a circuit design (41) for this module that requires only three
TRIA modules, as shown in Fig. 14(a). The black blobs attached to two of
the S-JOIN modules in the circuit scheme are signals that store the state of
the memory. Each of these signals keeps pending at its S-JOIN in the
absence of an input signal to the S-module.

The implementation of an S-module on the ACA is shown in
Fig. 14(b). In this figure, the memory is in state 1, and it receives an input
from its S-path. As all crossings are collision-free, the crossing module is
not required.

Computation by Asynchronously Updating Cellular Automata 283

(a) (b)

S

R

1

0

S’

R’

T

T

T

S

R

T T

T

R’

S’ 0

1

Fig. 14. (a) Delay-insensitive circuit of a 1-bit memory (S-module) and (b) its implementa-
tion on the ACA. The state of the memory is stored by two signals, indicated by black blobs,
each of which is pending at an S-JOIN.

6. CONCLUSIONS AND DISCUSSION

This paper shows how to conduct deterministic computations on
asynchronously updating cellular automata with a Moore neighborhood
and totalistic transition rules. In our approach, synchronization is done
locally, as opposed to the traditional approach by which a timing mecha-
nism is simulated on the cellular automaton that keeps the cells approxi-
mately in pace with each other. The traditional approach is essentially a
global synchronization scheme, since each of the cells is continuously busy
to support synchronization, even if it conducts no computation. Our
approach, on the other hand, requires only those cells on an asynchro-
nously updating cellular automaton to be active that are within a few cells
distance of a signal or a configuration processing a signal. We achieve this
result by simulating delay-insensitive circuits on asynchronously updating
cellular automata. Such circuits can be built from a few primitive modules,
which are shown in ref. 42 to be sufficient for constructing an infinite
circuit implementing a universal Turing Machine. This implies that the
proposed asynchronously updated cellular automaton is computationally
universal.

The delay-insensitive circuits employed in this paper are different from
traditional delay-insensitive circuits in the sense that (1) they allow more

284 Adachi et al.

than one signal on an interconnection line and (2) they allow bi-directional
interconnection lines, i.e., lines on which signals can propagate in both
directions, albeit never at the same time. Whereas these properties make
our circuits hard to efficiently implement by solid-state electronics, they
result in fewer interconnection lines for primitive modules, (42) making them
suitable for cellular automata. Cellular automata allow multiple signals on
a path in a natural way, only imposing the condition that subsequent
signals should be separated by at least one quiescent cell, as in Fig. 5.
Bi-directionality of paths follows from the rotational symmetry of the
cellular space.

The correct operation of the delay-insensitive circuits in this paper
depends on the correctness of the circuit design—a situation similar to that
with other types of circuit. If no care is taken as to how primitive modules
are combined and connected to each other, the resulting circuits may
contain signals piling up on a path behind a signal that remains pending to
a module, or they may contain signals coming from opposite directions on
a bi-directional path that run into each other, etc. Such situations, also
denoted as deadlock, are often characterized by different parts of a system
waiting indefinitely for input from each other. For example, two S-JOIN
primitives may mutually have to wait for input from each other, a situation
that can never be resolved. Deadlock of this type is hard to prevent,
because it is due to incorrect circuit design. Provided that circuits are
correctly designed and laid out on the cellular automaton, however,
deadlock will not occur, because an undefined combination of cell states
will never arise.

The transition rules allow the cellular automaton to run correctly
under an asynchronous timing scheme that randomly selects one of the
cells for update in each time step. Do the interactions between the cells in
an asynchronously updating cellular automaton differ in a principal way
from interactions in synchronous cellular automata? To address this ques-
tion we first note that the transition rules need to be designed without any
order in mind by which cells are selected for update. Some control on this
order is possible by using configurations in which each cell and its neigh-
bors are in a unique combination of states, such that only one (or a few)
transition rule(s) apply at a time. While this strategy tends to result in
cellular automaton designs in which most cells change their states in a
strictly sequential order (on a local scale), it leaves open situations in which
a transition rule not only has the intended effect in some configurations,
but where it also results in artifacts in other configurations. The way out of
this is to add transition rules that undo these artifacts. This comes at a
price, however. The transition rules added to undo artifacts may also undo
the intended effects, thereby interfering with the operation of the cellular

Computation by Asynchronously Updating Cellular Automata 285

automaton. A striking example of this is the use of rule 2 for signal propa-
gation (see Fig. 4), and its side effect in the FORK configuration, causing
the dead end configuration in Fig. 9(d). Rule 12 can be used to escape
from the dead-end, as it has exactly the opposite effect of rule 2. Unfortu-
nately, in turn rule 12 too has a side effect, as it may apply to configura-
tions for which it is not intended, reversing the result of rule 2 (Fig. 4(c)).
The latter side effect is not lethal, however, because, due to the asynchro-
nous nature of updating, there is a non-zero probability that not rule 12,
but another rule (in this case rule 3, resulting in the configuration in
Fig. 4(d)), is applied to the configuration, after which the sequence of
transitions continues. Rule 12 thus does not block the propagation of the
signal in Fig. 4, though it slows it down on the average. Similar effects
occur with rules 3 and 13 being each other’s opposites, rules 44 and 50, and
rules 46 and 47. Such situations may have their counterparts in systems in
nature, which may be characterized by interactions that are each others’
reverse. An example of such systems may be non-processive (cooperative
or single-headed) molecular motors (see ref. 66 for a review of Brownian
motors), which, according to some theories on muscular contraction (e.g.,
ref. 67) employ both forward and backward movements of (myosin) heads
to (actin) binding sites due to a loose mechanochemical coupling—an issue
attracting much debate. (68) Interpreted in the light of our results, these
forward–backward interactions may prevent a system from becoming stuck
in spurious attractor states, while still being able to bias a process in a
certain direction, albeit at a reduced speed.

As an asynchronous mode of operation is often found in nature,
where, for example, chemical reactions only occur when the right molecules
are available in the right positions, our approach promises improved ways
to simulate certain kinds of physical systems by cellular automata.

ACKNOWLEDGMENTS

We thank Shinro Mashiko at the Communications Research Labora-
tory, Japan, for his support. We also thank the two anonymous reviewers
for their valuable comments. This research is financed by the Ministry of
Public Management and Home Affairs in Japan.

REFERENCES

1. J. von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press,
1966).

2. E. F. Codd, Cellular Automata (Academic Press, New York, 1968).
3. E. R. Banks, Universality in cellular automata, IEEE 11th Ann. Symp. Switching and

Automata Theory (1970), pp. 194–215.

286 Adachi et al.

4. T. Serizawa, Three-state Neumann neighbor cellular automata capable of constructing self-
reproducing machines, Syst. Comput. Japan 18:33–40 (1986).

5. K. Morita and S. Ueno, Computation universal models of 2D 16-state reversible parti-
tioned cellular automata, IEICE Trans. Inf. Syst. E75-D:141–147 (1992).

6. C. G. Langton, Self-reproduction in cellular automata, Physica D 10:135–144 (1984).
7. N. Margolus, Physics-like models of computation, Physica D 10:81–95 (1984).
8. N. Margolus, Crystalline computation, in Feynman and Computation (Addison–Wesley,

1998).
9. M. Biafore, Cellular automata for nanometer-scale computation, Physica D 70:415–433

(1994).
10. M. A. Smith, Y. Bar-Yam, Y. Rabin, N. Margolus, T. Toffoli, and C. H. Bennett,

Cellular automaton simulation of polymers, Mat. Res. Soc. Symp. Proc. 248:483–488
(1992).

11. D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids, J. Statist. Phys.
52:1119–1127 (1988).

12. B. A. Huberman and N. S. Glance, Evolutionary games and computer simulations, Proc.
Natl. Acad. Sci. USA 90:7715–7718 (1993).

13. H. Bersini and V. Detours, Asynchrony induces stability in cellular automata based
models, in Artificial Life IV, Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes, eds. (MIT Press,
Cambridge, 1994), pp. 382–387.

14. E. A. Di Paolo, Rhythmic and non-rhythmic attractors in asynchronous random Boolean
networks, BioSystems 59:185–195 (2001).

15. M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature
359:826–829 (1992).

16. T. E. Ingerson and R. L. Buvel, Structures in asynchronous cellular automata, Physica D
10:59–68 (1984).

17. H. J. Blok and B. Bergersen, Synchronous versus asynchronous updating in the ‘‘game of
life,’’ Phys. Rev. E 59:3876–3879 (1999).

18. B. Schönfisch and A. de Roos, Synchronous and asynchronous updating in cellular
automata, BioSystems 51:123–143 (1999).

19. S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,
J. Theor. Biol. 22:437–467 (1969).

20. I. Harvey and T. Bossomaier, Time out of joint: Attractors in asynchronous random
boolean networks, in Proceedings of the Fourth European Conference on Artificial Life,
P. Husbands and I. Harvey, eds. (MIT Press, Cambridge, 1997), pp. 67–75.

21. S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5:965–974 (1975).
22. E. T. Gawlinski, M. Grant, J. D. Gunton, and K. Kaski, Growth of unstable domains in

the two-dimensional Ising model, Phys. Rev. B 31:281–286 (1985).
23. H. A. Ceccatto, Effective discrete-time dynamics in Monte Carlo simulations, Phys.

Rev. B 33:4734–4738 (1986).
24. K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like

structures and spatial intermittency in coupled map lattice—towards a prelude of a ‘‘Field
Theory of Chaos,’’ Prog. Theor. Phys. 72:480–486 (1984).

25. H. Chaté and P. Manneville, Collective behaviors in spatially extended systems with local
interactions and synchronous updating, Progr. Theor. Phys. 87:1–60 (1992).

26. E. D. Lumer and G. Nicolis, Synchronous versus asynchronous dynamics in spatial dis-
tributed systems, Physica D 71:440–452 (1994).

27. P. Marcq, H. Chaté, and P. Manneville, Universal critical behavior in two-dimensional
coupled map lattices, Phys. Rev. Lett. 77:4003–4006 (1996).

Computation by Asynchronously Updating Cellular Automata 287

28. P. Marcq, H. Chaté, and P. Manneville, Universality in Ising-like phase transitions of lat-
tices of coupled chaos, Phys. Rev. E 55:2606–2627 (1997).

29. G. Abramson and D. H. Zanette, Globally coupled maps with asynchronous updating,
Phys. Rev. E 58:4454–4460 (1998).

30. J. Rolf, T. Bohr, and M. H. Jensen, Directed percolation universality in asynchronous
evolution of spatiotemporal intermittency, Phys. Rev. E 57:R2503–R2506 (1998).

31. N. Gupte, T. M. Janaki, and S. Sinha, Effect of asynchronicity on the universal behavior
of coupled map lattices, arXiv:nlin.CD/0205020.

32. S. Goss and J. Deneubourg, Autocatalysis as a source of synchronized rhythmical activity
in social insects, Insects Soc. 35:310–315 (1988).

33. D. Cornforth, D. G. Green, D. Newth, and M. Kirley, Do artificial ants march in step?
Ordered asynchronous processes and modularity in biological systems, in Artificial Life
VIII, Proceedings of the Eighth International Workshop on Artificial Life, R. K. Standish,
H. A. Abbass, and M. A. Bedau, eds. (MIT Press, Cambridge, 2002), pp. 28–32.

34. W. Freeman, Tutorial on neurobiology: From single neurons to brain chaos, Int. J.
Bifurcation Chaos 2:451–482 (1992).

35. D. Green, Simulated fire spread in discrete fuels, Ecological Modeling 20:21–32 (1983).
36. P. Kourtz and W. O’Regan, A model for a small forest fire to simulate burned and

burning areas for use in a detection model, Forest Science 17:163–169 (1971).
37. S. Hauck, Asynchronous design methodologies: An overview, Proc. IEEE 83:69–93

(1995).
38. A. Davis and S. M. Nowick, An introduction to asynchronous circuit design, Technical

Report UUCS-97-013, Computer Science Department, University of Utah, Downloadable
from www.cs.columbia.edu/async/publications.html

39. P. Patra and D. S. Fussel, Efficient building blocks for delay insensitive circuits, Proc.
International Symp. on Advanced Research in Asynchronous Circuits and Systems (1994),
pp. 196–205.

40. C. J. Myers, Asynchronous Circuit Design (Wiley, 2001).
41. F. Peper, J. Lee, S. Adachi, and S. Mashiko, Laying out circuits on asynchronous cellular

arrays: A step towards feasible nanocomputers? Nanotechnology 14:469–485 (2003).
42. J. Lee, F. Peper, S. Adachi, and K. Morita, Universal delay-insensitive circuits with bi-

directional and buffering lines, to be published, 2003.
43. P. Patra, S. Polonsky, and D. S. Fussell, Delay-insensitive logic for RSFQ superconductor

technology, Proc. of the Third Int. Symp. on Adv. Res. in Asynchronous Circuits and
Systems (IEEE CS Press, 1997), pp. 42–53.

44. Y. Kameda, S. V. Polonsky, M. Maezawa, and T. Nanya, Self-timed parallel adders based
on DI RSFQ primitives, IEEE Trans. Appl. Superconductivity 9:4040–4045 (1999).

45. C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and
mono-molecular devices, Nature 408:541–548 (2000).

46. A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Molecule cascades, Science
298:1381–1387 (2002).

47. C. S. Lent and P. D. Tougaw, A device architecture for computing with quantum dots,
Proc. IEEE 85:541–557 (1997).

48. R. P. Cowburn and M. E. Welland, Room temperature magnetic Quantum Cellular
Automata, Science 287:1466–1468 (2000).

49. P. Gács, Deterministic computations whose history is independent of the order of
asynchronous updating, Tech. Report, Computer Science Department, Boston University
(1997).

50. P. Orponen, Computing with truly asynchronous threshold logic networks, Theor. Comp.
Sci. 174:123–136 (1997).

288 Adachi et al.

51. K. Nakamura, Asynchronous cellular automata and their computational ability, Systems,
Computers, Controls 5:58–66 (1974)

52. C. L. Nehaniv, Self-reproduction in asynchronous cellular automata, Proc. NASA/DoD
Conf. on Evolvable Hardware, EH’02 (2002), pp. 201–209.

53. T. Toffoli, Integration of the phase-difference relations in asynchronous sequential net-
works, in Proc. of the Fifth Colloquium on Automata, Languages, and Programming
(ICALP), Lecture Notes in Computer Science (LNCS 62), G. Ausiello and C. Böhm, eds.
(Springer, 1978), pp. 457–463.

54. J. Lee, S. Adachi, F. Peper, and K. Morita, Asynchronous game of life, to be published,
2003.

55. F. Peper, T. Isokawa, N. Kouda, and N. Matsui, Self-timed cellular automata and their
computational ability, Future Generation Computer Systems 18:893–904 (2002).

56. R. M. Keller, Towards a theory of universal speed-independent modules, IEEE Trans.
Comput. C-23:21–33 (1974).

57. J. Lee, S. Adachi, F. Peper, and K. Morita, Embedding universal delay-insensitive circuits
in asynchronous cellular spaces, Fundamenta Informaticae, accepted, 2003.

58. S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55:601–644
(1983).

59. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical
Plays (Academic Press, 1982).

60. M. Creutz, Confinement and the critical dimensionality of space-time, Phys. Rev. Lett.
43:553–556 (1979).

61. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence 6:721–741
(1984).

62. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equa-
tions of state calculations by fast computing machines, J. Chem. Phys. 21:1087–1092
(1953).

63. S. Adachi, J. Lee, and F. Peper, On signals in asynchronous cellular spaces, to be
published, 2003.

64. J. A. Brzozowski and J. C. Ebergen, On the delay-sensitivity of gate networks, IEEE
Trans. Comput. 41:1349–1360 (1992).

65. A. J. Martin, The limitations to delay-insensitivity in asynchronous circuits, Proc. 6th
MIT Conf. on Advanced Research in VLSI (MIT Press, Cambridge, 1990), pp. 263–278.

66. P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep.
361:57–265 (2002).

67. K. Kitamura, M. Tokunaga, A. H. Iwane, and T. Yanagida, A single myosin head moves
along an actin filament with regular steps of 5.3 nanometers, Nature 397:129–134 (1999).

68. Swimming against the tide, news feature, Nature 408:764–766 (2000).

Computation by Asynchronously Updating Cellular Automata 289

	1. INTRODUCTION
	2. ASYNCHRONOUSLY UPDATING CELLULAR AUTOMATA
	3. SIGNALS
	4. DELAY INSENSITIVE CIRCUITS
	5. IMPLEMENTING DELAY-INSENSITIVE CIRCUITS ON ASYNCHRONOUS CELLULAR AUTOMATA
	6. CONCLUSIONS AND DISCUSSION
	ACKNOWLEDGMENTS

